Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Front Immunol ; 13: 952650, 2022.
Article in English | MEDLINE | ID: covidwho-2326989

ABSTRACT

Given pandemic risks of zoonotic SARS-CoV-2 variants and other SARS-like coronaviruses in the future, it is valuable to perform studies on conserved antigenic sites to design universal SARS-like coronavirus vaccines. By using antibodies obtained from convalescent COVID-19 patients, we succeeded in functional comparison of conserved antigenic sites at multiple aspects with each other, and even with SARS-CoV-2 unique antigenic sites, which promotes the cognition of process of humoral immune response to the conserved antigenic sites. The conserved antigenic sites between SARS-CoV-2 and SARS-CoV can effectively induce affinity maturation of cross-binding antibodies, finally resulting in broadly neutralizing antibodies against multiple variants of concern, which provides an important basis for universal vaccine design, however they are subdominant, putatively due to their lower accessibility relative to SARS-CoV-2 unique antigenic sites. Furthermore, we preliminarily design RBDs to improve the immunogenicity of these conserved antigenic sites. Our study focusing on conserved antigenic sites provides insights for promoting the development of universal SARS-like coronavirus vaccines, thereby enhancing our pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus/genetics
2.
Sensors and Actuators B: Chemical ; : 133939, 2023.
Article in English | ScienceDirect | ID: covidwho-2311807

ABSTRACT

Nucleic acid testing (NAT) is directly oriented to determining the genetic material of pathogens and is characterized by its high sensitivity and specificity, which are indispensable qualities in disease diagnosis. However, standard laboratory NAT methods require joint testing by highly trained inspectors using multiple instruments in professional laboratories. The entire process requires many manual steps, and the total testing time may range from 3 to 5h, indicating that these methods cannot be used to realize the demands of on-site rapid testing. In this study, we propose a microfluidic chip for the on-site and rapid detection of nucleic acids. We utilize dynamic sealing, ultrasound, and advanced control methods and integrate the entire process of reagent pre-storage, extraction, Real-time Quantitative polymerase chain reaction (qPCR), and fluorescence detection. The sensitivity of this system is in line with current clinical standards, and the nucleic acid quantification process is completed fully automated within 30min. Compared with conventional microfluidic chips, the proposed system has the advantages of high integration, low cost, and it may be produced at a high volume. Moreover, it can be used in a wide range of screening cases in the context of the COVID-19 pandemic and exhibits broad clinical application prospects.

3.
Adv Sci (Weinh) ; 10(17): e2207249, 2023 06.
Article in English | MEDLINE | ID: covidwho-2299008

ABSTRACT

Highly pathogenic coronavirus (CoV) infection induces a defective innate antiviral immune response coupled with the dysregulated release of proinflammatory cytokines and finally results in acute respiratory distress syndrome (ARDS). A timely and appropriate triggering of innate antiviral response is crucial to inhibit viral replication and prevent ARDS. However, current medical countermeasures can rarely meet this urgent demand. Here, an antiviral nanobiologic named CoVR-MV is developed, which is polymerized of CoVs receptors based on a biomimetic membrane vesicle system. The designed CoVR-MV interferes with the viral infection by absorbing the viruses with maximized viral spike target interface, and mediates the clearance of the virus through its inherent interaction with macrophages. Furthermore, CoVR-MV coupled with the virus promotes a swift production and signaling of endogenous type I interferon via deregulating 7-dehydrocholesterol reductase (DHCR7) inhibition of interferon regulatory factor 3 (IRF3) activation in macrophages. These sequential processes re-modulate the innate immune responses to the virus, trigger spontaneous innate antiviral defenses, and rescue infected Syrian hamsters from ARDS caused by SARS-CoV-2 and all tested variants.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Immunity, Innate , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
4.
Cell Mol Immunol ; 20(4): 351-364, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287148

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Humans , SARS-CoV-2/metabolism , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Caspofungin , Felodipine , Cytokine Release Syndrome/drug therapy , Inflammation , Cytokines/metabolism
5.
Cell Host Microbe ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2237104

ABSTRACT

SARS-CoV-2 spread in humans results in continuous emergence of new variants, highlighting the need for vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation-patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x) that contains key regions and residues across multiple SAR-CoV-2 variants. STFK1628x demonstrated high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine composed of STFK and STFK1628x elicited high titers of broad-spectrum neutralizing antibodies to 19 circulating SARS-CoV-2 variants, including Omicron sublineages BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5. Furthermore, this vaccine conferred robust protection against intranasal challenges by either SARS-CoV-2 ancestral strain or immune-evasive Beta and Omicron BA.1. Strikingly, vaccination with the bivalent vaccine in hamsters effectively blocked within-cage virus transmission of ancestral SARS-CoV-2, Beta variant, and Omicron BA.1 to unvaccinated sentinels. Thus, our study provided insight and antigen candidates for the development of next-generation COVID-19 vaccines.

6.
J Virol ; 97(2): e0168422, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2193454

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is becoming a dominant circulator and has several mutations in the spike glycoprotein, which may cause shifts of immunogenicity, so as to result in immune escape and breakthrough infection among the already infected or vaccinated populations. It is unclear whether infection with Omicron could generate adequate cross-variant protection. To investigate this possibility, we used Syrian hamsters as an animal model for infection of SARS-CoV-2. The serum from Omicron BA.1 variant-infected hamsters showed a significantly lower neutralization effect against infection of the same or different SARS-CoV-2 variants than the serum from Beta variant-infected hamsters. Furthermore, the serum from Omicron BA.1 variant-infected hamsters were insufficient to protect against rechallenge of SARS-CoV-2 Prototype, Beta and Delta variants and itself. Importantly, we found that rechallenge with different SARS-CoV-2 lineages elevated cross-variant serum neutralization titers. Overall, our findings indicate a weakened immunogenicity feature of Omicron BA.1 variant that can be overcome by rechallenge of a different SARS-CoV-2 lineages. Our results may lead to a new guideline in generation and use of the vaccinations to combat the pandemic of SARS-CoV-2 Omicron variant and possible new variants. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant causes breakthrough infections among convalescent patients and vaccinated populations. However, Omicron does not generate robust cross-protective responses. Here, we investigate whether heterologous SARS-CoV-2 challenge is able to enhance antibody response in a sensitive animal model, namely, Syrian hamster. Of note, a heterologous challenge of Beta and Omicron BA.1 variant significantly broadens the breadth of SARS-CoV-2 neutralizing responses against the prototype, Beta, Delta, and Omicron BA.1 variants. Our findings confirm that vaccination strategy with heterologous antigens might be a good option to protect against the evolving SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Heterophile/immunology , Breakthrough Infections , COVID-19/prevention & control , Mesocricetus , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Immunogenicity, Vaccine
7.
Front Bioeng Biotechnol ; 10: 994743, 2022.
Article in English | MEDLINE | ID: covidwho-2099105

ABSTRACT

The Baculovirus Expression Vector System (BEVS), a mature foreign protein expression platform, has been available for decades, and has been effectively used in vaccine production, gene therapy, and a host of other applications. To date, eleven BEVS-derived products have been approved for use, including four human vaccines [Cervarix against cervical cancer caused by human papillomavirus (HPV), Flublok and Flublok Quadrivalent against seasonal influenza, Nuvaxovid/Covovax against COVID-19], two human therapeutics [Provenge against prostate cancer and Glybera against hereditary lipoprotein lipase deficiency (LPLD)] and five veterinary vaccines (Porcilis Pesti, BAYOVAC CSF E2, Circumvent PCV, Ingelvac CircoFLEX and Porcilis PCV). The BEVS has many advantages, including high safety, ease of operation and adaptable for serum-free culture. It also produces properly folded proteins with correct post-translational modifications, and can accommodate multi-gene- or large gene insertions. However, there remain some challenges with this system, including unstable expression and reduced levels of protein glycosylation. As the demand for biotechnology increases, there has been a concomitant effort into optimizing yield, stability and protein glycosylation through genetic engineering and the manipulation of baculovirus vector and host cells. In this review, we summarize the strategies and technological advances of BEVS in recent years and explore how this will be used to inform the further development and application of this system.

8.
iScience ; 25(12): 105475, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2095531

ABSTRACT

Recently, a new variant lineage of SARS-CoV-2, namely Omicron, became the dominant global circulating strain. The multiple antigenic mutations of Omicron largely decrease the efficiency of current vaccines and neutralizing antibodies, which highlights the need for more potent and reachable medical countermeasures. Here, we hypothesize that direct viral clearance by nasal irrigation might be a convenient and alternative option, and perform proof-of-concept experiments in the Syrian hamster model. Interestingly, Omicron shows a different dynamic in the changes of viral RNA, viral titers, and proinflammatory cytokines in nasal rinsing samples when compared with the prototype. Meanwhile, the levels of viral load and proinflammatory cytokines in nasal rinsing samples can indicate the severity of lung injury. Of note, daily nasal irrigation efficiently attenuates inflammation and lung injury in Omicron-infected hamsters by decreasing the viral loads in the respiratory tract organs. Moreover, daily nasal irrigation effectively suppresses viral transmission by close contact.

9.
Cell Mol Immunol ; 19(12): 1392-1399, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2077039

ABSTRACT

The new predominant circulating SARS-CoV-2 variant, Omicron, can robustly escape current vaccines and neutralizing antibodies. Although Omicron has been reported to have milder replication and disease manifestations than some earlier variants, its pathogenicity in different age groups has not been well elucidated. Here, we report that the SARS-CoV-2 Omicron BA.1 sublineage causes elevated infection and lung pathogenesis in juvenile and aged hamsters, with more body weight loss, respiratory tract viral burden, and lung injury in these hamsters than in adult hamsters. Juvenile hamsters show a reduced interferon response against Omicron BA.1 infection, whereas aged hamsters show excessive proinflammatory cytokine expression, delayed viral clearance, and aggravated lung injury. Early inhaled IFN-α2b treatment suppresses Omicron BA.1 infection and lung pathogenesis in juvenile and adult hamsters. Overall, the data suggest that the diverse patterns of the innate immune response affect the disease outcomes of Omicron BA.1 infection in different age groups.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Interferon-alpha , Lung Injury , Animals , Cricetinae , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , Antiviral Agents , COVID-19/pathology , Interferon-alpha/therapeutic use , Lung Injury/virology , Mesocricetus , SARS-CoV-2
10.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046995

ABSTRACT

Given pandemic risks of zoonotic SARS-CoV-2 variants and other SARS-like coronaviruses in the future, it is valuable to perform studies on conserved antigenic sites to design universal SARS-like coronavirus vaccines. By using antibodies obtained from convalescent COVID-19 patients, we succeeded in functional comparison of conserved antigenic sites at multiple aspects with each other, and even with SARS-CoV-2 unique antigenic sites, which promotes the cognition of process of humoral immune response to the conserved antigenic sites. The conserved antigenic sites between SARS-CoV-2 and SARS-CoV can effectively induce affinity maturation of cross-binding antibodies, finally resulting in broadly neutralizing antibodies against multiple variants of concern, which provides an important basis for universal vaccine design, however they are subdominant, putatively due to their lower accessibility relative to SARS-CoV-2 unique antigenic sites. Furthermore, we preliminarily design RBDs to improve the immunogenicity of these conserved antigenic sites. Our study focusing on conserved antigenic sites provides insights for promoting the development of universal SARS-like coronavirus vaccines, thereby enhancing our pandemic preparedness.

11.
Frontiers in bioengineering and biotechnology ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2045717

ABSTRACT

The Baculovirus Expression Vector System (BEVS), a mature foreign protein expression platform, has been available for decades, and has been effectively used in vaccine production, gene therapy, and a host of other applications. To date, eleven BEVS-derived products have been approved for use, including four human vaccines [Cervarix against cervical cancer caused by human papillomavirus (HPV), Flublok and Flublok Quadrivalent against seasonal influenza, Nuvaxovid/Covovax against COVID-19], two human therapeutics [Provenge against prostate cancer and Glybera against hereditary lipoprotein lipase deficiency (LPLD)] and five veterinary vaccines (Porcilis Pesti, BAYOVAC CSF E2, Circumvent PCV, Ingelvac CircoFLEX and Porcilis PCV). The BEVS has many advantages, including high safety, ease of operation and adaptable for serum-free culture. It also produces properly folded proteins with correct post-translational modifications, and can accommodate multi-gene– or large gene insertions. However, there remain some challenges with this system, including unstable expression and reduced levels of protein glycosylation. As the demand for biotechnology increases, there has been a concomitant effort into optimizing yield, stability and protein glycosylation through genetic engineering and the manipulation of baculovirus vector and host cells. In this review, we summarize the strategies and technological advances of BEVS in recent years and explore how this will be used to inform the further development and application of this system.

12.
Vaccine ; 40(47): 6839-6848, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2042193

ABSTRACT

The ongoing coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drastically changed our way of life and continues to have an unmitigated socioeconomic impact across the globe. Research into potential vaccine design and production is focused on the spike (S) protein of the virus, which is critical for virus entry into host cells. Yet, whether the degree of glycosylation in the S protein is associated with vaccine efficacy remains unclear. Here, we first optimized the expression of the S protein in mammalian cells. While we found no significant discrepancy in purity, homogeneity, or receptor binding ability among S proteins derived from 293F cells (referred to as 293F S-2P), 293S GnTI- cells (defective in N-acetylglucosaminyl transferase I enzyme; 293S S-2P), or TN-5B1-4 insect cells (Bac S-2P), there was significant variation in the glycosylation patterns and thermal stability of the proteins. Compared with the partially glycosylated 293S S-2P or Bac S-2P, the fully glycosylated 293F S-2P exhibited higher binding reactivity to convalescent sera. In addition, 293F S-2P induced higher IgG and neutralizing antibody titres than 293S or Bac S-2P in mice. Furthermore, a prime-boost-boost regimen, using a combined immunization of S-2P proteins with various degrees of glycosylation, elicited a more robust neutralizing antibody response than a single S-2P alone. Collectively, this study provides insight into ways to design a more effective SARS-CoV-2 immunogen.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Mice , Animals , SARS-CoV-2 , Glycosylation , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Mammals/metabolism , COVID-19 Serotherapy
13.
J Nanobiotechnology ; 20(1): 411, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2029712

ABSTRACT

The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19 , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
14.
Front Pharmacol ; 13: 963978, 2022.
Article in English | MEDLINE | ID: covidwho-2009897

ABSTRACT

Infectious diseases, caused by pathogenic microorganisms, are capable of affecting crises. In addition to persistent infectious diseases such as malaria and dengue fever, the vicious outbreaks of infectious diseases such as Neocon, Ebola and SARS-CoV-2 in recent years have prompted the search for more efficient and convenient means for better diagnosis and treatment. Antibodies have attracted a lot of attention due to their good structural characteristics and applications. Nanobodies are the smallest functional single-domain antibodies known to be able to bind stably to antigens, with the advantages of high stability, high hydrophilicity, and easy expression and modification. They can directly target antigen epitopes or be constructed as multivalent nanobodies or nanobody fusion proteins to exert therapeutic effects. This paper focuses on the construction methods and potential functions of nanobodies, outlines the progress of their research, and highlights their various applications in human infectious diseases.

15.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1991767

ABSTRACT

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Conserved Sequence , Cricetinae , Cryoelectron Microscopy , Epitopes/immunology , Humans , Mice , Neutralization Tests , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
16.
J Virol Methods ; 309: 114597, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1966905

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has become disaster for human society. As the pandemic becomes more regular, we should develop more rapid and accurate detection methods to achieve early diagnosis and treatment. Antigen detection methods based on spike protein has great potential, however, it has not been effectively developed, probably due to the torturing conformational complexity. By utilizing cross-blocking data, we clustered SARS-CoV-2 receptor binding domain (RBD)-specific monoclonal antibodies (mAbs) into 6 clusters. Subsequently, the antigenic sites for representative mAbs were identified by RBDs with designed residue substitutions. The sensitivity and specificity of selected antibody pairs was demonstrated using serial diluted samples of SARS-CoV-2 S protein and SARS-CoV S protein. Furthermore, pseudovirus system was constructed to determine the detection capability against SARS-CoV-2 and SARS-CoV. 6 RBD-specific mAbs, recognizing different antigenic sites, were identified as potential candidates for optimal antibody pairs for detection of SARS-CoV-2 S protein. By considering relative spatial position, accessibility and conservation of corresponding antigenic sites, affinity and the presence of competitive antibodies in clinical samples, 6H7-6G3 was rationally identified as optimal antibody pair for detection of both SARS-CoV-2 and SARS-CoV. Furthermore, our results showed that 6H7 and 6G3 effectively bind to SARS-CoV-2 variants of concern (VOCs). Taken together, we identified 6H7-6G3 antibody pair as a promising rapid antigen diagnostic tool in containing COVID-19 pandemic caused by multiple VOCs. Moreover, our results also provide an important reference in screening of antibody pairs detecting antigens with complex conformation.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
17.
Front Microbiol ; 13: 854630, 2022.
Article in English | MEDLINE | ID: covidwho-1952414

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented public health crisis worldwide. Although several vaccines are available, the global supply of vaccines, particularly within developing countries, is inadequate, and this necessitates a need for the development of less expensive, accessible vaccine options. To this end, here, we used the Escherichia coli expression system to produce a recombinant fusion protein comprising the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; residues 319-541) and the fragment A domain of Cross-Reacting Material 197 (CRM197); hereafter, CRMA-RBD. We show that this CRMA-RBD fusion protein has excellent physicochemical properties and strong reactivity with COVID-19 convalescent sera and representative neutralizing antibodies (nAbs). Furthermore, compared with the use of a traditional aluminum adjuvant, we find that combining the CRMA-RBD protein with a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH-002C-Ac) leads to stronger humoral immune responses in mice, with 4-log neutralizing antibody titers. Overall, our study highlights the value of this E. coli-expressed fusion protein as an alternative vaccine candidate strategy against COVID-19.

19.
J Virol Methods ; 307: 114564, 2022 09.
Article in English | MEDLINE | ID: covidwho-1878302

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infections has led to excess deaths worldwide. Neutralizing antibodies (nAbs) against viral spike protein acquired from natural infections or vaccinations contribute to protection against new- and re-infections. Besides neutralization, antibody-mediated cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are also important for viral clearance. However, due to the lack of convenient methods, the ADCC and ADCP responses elicited by viral infections or vaccinations remain to be explored. Here, we developed cell-based assays using target cells stably expressing SARS-CoV-2 spikes and Jurkat-NFAT-CD16a/CD32a effector cells for ADCC/ADCP measurements of monoclonal antibodies and human convalescent COVID-19 plasmas (HCPs). In control samples (n = 190), the specificity was 99.5% (95%CI: 98.4-100%) and 97.4% (95%CI: 95.1-99.6%) for the ADCC and ADCP assays, respectively. Among 87 COVID-19 HCPs, 83 (sensitivity: 95.4%, 95%CI: 91.0-99.8%) and 81 (sensitivity: 93.1%, 95%CI: 87.8-98.4%) showed detectable ADCC (titer range: 7.4-1721.6) and ADCP activities (titer range: 4-523.2). Notably, both ADCC and ADCP antibody titers positively correlated with the nAb titers in HCPs. In summary, we developed new tools for quantitative ADCC and ADCP analysis against SARS-CoV-2, which may facilitate further evaluations of Fc-mediated effector functions in preventing and treating against SARS-CoV-2.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Humans , Immunoassay/methods , Pandemics , Phagocytosis , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
20.
Lancet Respir Med ; 10(8): 749-760, 2022 08.
Article in English | MEDLINE | ID: covidwho-1867947

ABSTRACT

BACKGROUND: All currently available SARS-CoV-2 vaccines are administered by intramuscular injection. We aimed to evaluate the safety and immunogenicity of a live-attenuated influenza virus vector-based SARS-CoV-2 vaccine (dNS1-RBD) administered by intranasal spray in healthy adults. METHODS: We did double-blind, randomised, placebo-controlled phase 1 and 2 trials, followed by a phase 2 extension trial, at a single centre in Jiangsu, China. Healthy adults (≥18 years) who had negative serum or fingertip blood total antibody tests for SARS-CoV-2 (in phases 1 and 2), with no prevalent SARS-CoV-2 infection or history of infection and no SARS-CoV-2 vaccination history (in all three trials reported here), were enrolled. Participants were randomly allocated (4:1 in phase 1, 2:1 in phase 2, and 1:1 in the extension trial) to receive two intranasal doses of the dNS1-RBD vaccine or placebo on days 0 and 14 or, for half of the participants in phase 2, on days 0 and 21. To avoid cross-contamination during administration, vaccine and placebo recipients were vaccinated in separate rooms in the extension trial. The phase 1 primary outcome was safety (adverse events recorded on days 0-44; serious adverse events recorded from day 0 until 12 months after the second dose). In the phase 2 and extension trials, the primary immunogenicity outcomes were SARS-CoV-2-specific T-cell response in peripheral blood (measured by IFN-γ ELISpot), proportion of participants with positive conversion for SARS-CoV-2 receptor-binding domain (RBD)-specific IgG and secretory IgA (s-IgA) antibodies, and concentration of SARS-CoV-2 RBD IgG in serum and SARS-CoV-2 RBD s-IgA in the nasopharynx (measured by ELISA) at 1 month after the second dose in the per-protocol set for immunogenicity. χ2 test and Fisher's exact test were used to analyse categorical data, and t test and Wilcoxon rank sum test to compare the measurement data between groups. These trials were registered with the Chinese Clinical Trial Registry (ChiCTR2000037782, ChiCTR2000039715, and ChiCTR2100048316). FINDINGS: Between Sept 1, 2020, and July 4, 2021, 63, 724, and 297 participants without a history of SARS-CoV-2 vaccination were enrolled in the phase 1, phase 2, and extension trials, respectively. At least one adverse reaction after vaccination was reported in 133 (19%) of 684 participants in the vaccine groups. Most adverse reactions were mild. No vaccine-related serious adverse event was noted. Specific T-cell immune responses were observed in 211 (46% [95% CI 42-51]) of 455 vaccine recipients in the phase 2 trial, and in 48 (40% [31-49]) of 120 vaccine recipients compared with one (1% [0-5]) of 111 placebo recipients (p<0·0001) in the extension trial. Seroconversion for RBD-specific IgG was observed in 48 (10% [95% CI 8-13]) of 466 vaccine recipients in the phase 2 trial (geometric mean titre [GMT] 3·8 [95% CI 3·4-4·3] in responders), and in 31 (22% [15-29]) of 143 vaccine recipients (GMT 4·4 [3·3-5·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. 57 (12% [95% CI 9-16]) of 466 vaccine recipients had positive conversion for RBD-specific s-IgA (GMT 3·8 [95% CI 3·5-4·1] in responders) in the phase 2 trial, as did 18 (13% [8-19]) of 143 vaccine recipients (GMT 5·2 [4·0-6·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. INTERPRETATION: dNS1-RBD was well tolerated in adults. Weak T-cell immunity in peripheral blood, as well as weak humoral and mucosal immune responses against SARS-CoV-2, were detected in vaccine recipients. Further studies are warranted to verify the safety and efficacy of intranasal vaccines as a potential supplement to current intramuscular SARS-CoV-2 vaccine pools. Steps should be taken in future studies to reduce the potential for cross-contamination caused by the vaccine strain aerosol during administration. FUNDING: National Key Research and Development Program of China, National Science, Fujian Provincial Science, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai Biological Pharmacy Enterprise.


Subject(s)
COVID-19 Vaccines , COVID-19 , Orthomyxoviridae , Viral Vaccines , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccines, Attenuated/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL